BILL WICKNER LAB at Dartmouth
William Tobey Wickner M.D.
Academic Position Professor of Biochemistry and Cell Biology
Geisel School of Medicine at Dartmouth
Date and Place of Birth March 13, 1946; Wallkill, New York
Marital Status Married (Hali), Two children (Dana and Paige)
Four grandchildren (Fia, Kai, Teo, Zac)
Education 1963-67 Yale University
B.A. in Chemistry, June 1967
1967-73 Harvard Medical School
M.D., June 1973
Professional Experience 1968-71 Harvard Medical School, Biochemistry Dept. (predoctoral supervisor: Eugene Kennedy)
1971-74 Stanford Medical School Biochemistry Dept.
(postdoctoral supervisor: Dr. Arthur Kornberg)
1974-76 Senior Research Fellow, Stanford Biochemistry
1976-93 Assistant to Full Professor, UCLA, Dept of Biological Chemistry and Mol. Biol. Institute
1993- Professor of Biochemistry, Dartmouth Med School
Service 1988-93 Assist. & Assoc. Director, Mol. Biol. Inst., UCLA
1987-91 NIH Cell Biology Study Section Member
1989-91 Chairman, NIH Cell Biol. Study Section
1991-95 Editorial Board, Annual Reviews of Biochemistry
1994-96 U.S. Representative, HFSPO Fellowship Committee
1993-00 Chairman, Department of Biochemistry
2004-11 Editorial Board, Proc. Natl. Acad. Sci. USA
2006-08 Chairman, Biochemistry Section, Nat'l Acad Sci.
Fellowships and Honors 1966, 67 Phi Beta Kappa, Magna cum laude, Yale College
1971-76 Graub Fellow (CF Foundation); Mellon Fellow
1979-84 Am. Cancer Soc. Faculty Research Award
1982-83 Guggenheim Fellow
1988-98 NIH Merit Award
1993-16 Chilcott Distinguished Professor of Biochemistry
1995 Fellow of American Academy of Microbiology
1996 National Academy of Sciences, member
2000 European Mol. Biol. Org. (EMBO), foreign member
2003 American Academy of Arts & Science, member
2008 Bavarian Academy of Sciences, corresp. member
2009 Bonhoeffer Medal, University of Goettingen
2011 Am. Association Advancement Science, Fellow
2012 Van Deenen Medal, Utrecht; UCLA Sigman Lecture;
Max Gruber Lecture, U. Groningen
2017 Rose Award, Am Soc Biochem & Mol Biol
2018 Novikoff Lecture, Lysosomes Gordon Conference
Publications
1. Dowhan, W., Wickner, W. and Kennedy, E.P. (1974). Purification and properties of phosphatidylserine decarboxylase from Escherichia coli. J. Biol. Chem. 249, 3079-3084.
2. Raetz, C., Hirschberg, C., Dowhan, W., Wickner, W. and Kennedy, E.P. (1972). The hydrolysis of CDP-diglyceride by a membrane-bound pyrophosphatase from Escherichia coli. J. Biol. Chem. 247, 2245-2247.
3. Wickner, W., Brutlag, D., Schekman, R. and Kornberg, A. (1972). RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proc. Natl. Acad. Sci. U.S.A. 69, 965-969.
4. Schekman, R., Wickner, W., Westergaard, O., Brutlag, D., Geider, K., Bertsch, L.L. and Kornberg, A. (1972). Synthesis of FX174 replicative form requires RNA synthesis resistant to rifampicin. Proc. Natl. Acad. Sci. U.S.A. 69, 6291-2695.
5. Wickner, W., Schekman, R., Geider, K. and Kornberg, A. (1973). DNA polymerase III*, a new form of polymerase III, and a copolymerase replicate a long single-stranded primer-template. Proc. Natl. Acad. Sci. U.S.A. 70, 1764-1767.
6. Wickner, W. and Kornberg, A. (1973). DNA polymerase III* requires ATP to start synthesis on a primed DNA. Proc. Natl. Acad. Sci. U.S.A. 70, 3679-3683.
7. Wickner, W. and Kornberg, A. (1974). A holoenzyme form of DNA polymerase III: Isolation and properties. J. Biol. Chem. 249, 6244-6249.
8. Wickner, W. and Kornberg, A. (1974). A novel form of RNA polymerase from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 71, 4425-4428.
9. Wickner, W. (1975). Asymmetric orientation of a phage coat protein in cytoplasmic membranes of Escherichia coli . Proc. Natl. Acad. Sci. U.S.A. 72, 4749-4753.
10. Wickner, W. (1976). Asymmetric orientation of phage M13 coat protein in Escherichia coli cytoplasmic membranes and in synthetic lipid vesicles. Proc. Natl. Acad. Sci. U.S.A. 73, 1159-1163.
11. Wickner, W. (1976). The role of hydrophobic forces in membrane protein asymmetry. Biochemistry 16, 254-258.
12. Wickner, W. (1976). Fractionation of membrane vesicles from M13-infected Escherichia coli. J. Bact. 127, 162-167.
13. Wickner, W. and Killick, T. (1977). Membrane associated assembly of M13 phage in extracts of virus-infected Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 74, 505-509.
14. Zwizinski, C. and Wickner, W. (1977). Studies of asymmetric membrane assembly. Biochem. Biophys. Acta 471, 169-176.
15. Wickner, W. Mandel, G., Zwizinski, C., Bates, M. and Killick, T. (1978). Synthesis of phage M13 coat protein and its assembly into membranes in vitro. Proc. Natl. Acad. Sci. U.S.A. 75, 1754-1758.
16. Mandel. G. and Wickner, W. (1979). Translational and post-translational cleavage of M13 procoat protein: Extracts of both the cytoplasmic and outer membranes of Escherichia coli contain leader peptidase activity. Proc. Natl. Acad. Sci. U.S.A. 76, 236-240.
17. Ito, K., Mandel, G. and Wickner, W. (1979). Soluble precursor of an integral membrane protein: Synthesis of procoat protein in Escherichia coli infected with bacteriophage M13. Proc. Natl. Acad. Sci. U.S.A. 76, 1199-1203.
18. Wickner, W. (1979). The assembly of proteins into biological membranes: The membrane trigger hypothesis. Ann. Rev. Biochem. 48, 23-45.
19. Knoppel, E., Eisenberg, D. and Wickner, W. (1979). Conformational changes of melittin, a preprotein model, as it interacts with detergents and lipid. Biochem. 18, 4177-4181.
20. Kimelman, D., Tecoma, E., Wolber, P., Hudson, B., Wickner, W. and Simoni, R. (1979). Protein-lipid interactions: Studies of the M13 coat protein in dimyristoylphosphatidylcholine vesicles using parinaric acid. Biochem. 18, 5874-5880.
21. Ito, K., Date, T. and Wickner, W. (1980). Synthesis, assembly into the cytoplasmic membrane, and proteolytic processing of the precursor of coliphage M13 coat protein. J. Biol. Chem. 255, 2123-2130.
22. Wickner, W., Ito, K., Mandel, G., Bates, M., Nokelainen, M. and Zwizinski, C. (1980). The three lives of M13 coat protein: A viron capsid, an integral membrane protein, and a soluble cytoplasmid pro-protein. Ann. N.Y. Acad. Sci. 343, 384-390.
23. Anderson, D., Terwilliger, T.C., Wickner, W. and Eisenberg, D. (1980). Melittin forms crystals which are suitable for high-resolution X-ray structural analysis and which reveal a molecular two-fold axis of symmetry. J. Biol. Chem. 255,2578-2582.
24. Date, T., Zwizinski, C., Ludmerer, S. and Wickner, W. (1980). Mechanisms of membrane assembly: The effects of energy poisons on the conversion of soluble M13 procoat to membrane-bound coat protein. Proc. Natl. Acad. Sci. U.S.A. 77, 827-831.
25. Silver, P. and Wickner, W. (1980). Studies of the role of M13 gene 1 protein in filamentous virus assembly. J. Virol. 35, 256-258.
26. Zwizinski, C. and Wickner, W. (1980). Isolation and characterization of leader (signal) peptidase from Escherichia coli. J. Biol. Chem. 255, 7973-7977.
27. Wickner, W. (1980). Assembly of proteins into membranes. Science 210, 861-868.
28. Date, T., Goodman, J.M. and Wickner, W. (1980). Procoat, the precursor of M13 coat protein, requires an electrochemical potential for membrane insertion. Proc. Natl. Acad. Sci. U.S.A. 77, 4669-4673.
29. Date, T. and Wickner, W. (1980) Procoat, the precursor of M13 coat protein, inserts post-translationally into the membrane of cells infected by wild-type virus. J. Virol. 37, 1087-1089.
30. Zwizinski, C., Date, T. and Wickner, W. (1981). Leader peptidase is found in both the inner and outer membranes of Escherichia coli. J. Biol. Chem. 256, 3593-3597.
31. Goodman, J.M., Watts, C. and Wickner, W. (1981). Mechanisms of membrane assembly: The post-translational insertion of M13 procoat protein into E. coli membranes and its proteolytic conversion to coat protein in vitro. Cell 24, 437-442.
32. Silver, P., Watts, C. and Wickner, W. (1981). Membrane assembly from purified components. I. Isolation and properties of radiochemically pure M13 procoat, a membrane protein precursor. Cell 25, 341-345.
33. Watts, C., Silver, P. and Wickner, W. (1981). Membrane assembly from purified components. II. Proteolytic processing and insertion of M13 procoat into liposomes reconstituted with purified leader peptidase. Cell 25, 347-353.
34. Date, T. and Wickner, W. (1981). Isolation of the E. coli leader peptidase gene and effects of its overproduction in vivo. Proc. Natl. Acad. Sci. U.S.A. 78, 6106-6110.
35. Zimmermann, R., Watts, C. and Wickner, W. (1982). The biosynthesis of membrane-bound M13 coat proteins: Energetics and assembly intermediates. J. Biol. Chem. 257, 6529-6536.
36. Wickner, W., Date, T., Zimmermann, R. and Ito, K. (1982). Pulse-labeling studies of membrane assembly and protein secretion in intact cells: M13 coat protein. Methods in Enzymology, 97, 57-61.
37. Wolfe, P.B., Zwizinski, C. and Wickner, W. (1982). Purification and characterization of leader peptidase from E. coli. Methods in Enzymology. 97, 40-46.
38. Wolfe, P.B., Silver, P. and Wickner, W. (1982). Membrane assembly from purified components. III. The isolation and homogeneous leader peptidase from a strain of Escherichia coli which overproduces the enzyme. J. Biol. Chem. 257, 7898-7902.
39. Zwizinski, C. and Wickner, W. (1982). Membrane assembly from purified components. IV. The purification of M13 procoat, a membrane protein precursor. EMBO J. 1, 573-578.
40. Date, T., Silver, P. and Wickner, W. (1982). Molecular genetics of E. coli leader peptidase. Methods in Enzymology 97, 46-57.
41. Watts, C., Goodman, J.M., Silver, P. and Wickner, W. (1982). Analysis of M13 procoat assembly into membranes in vitro. Methods in Enzymology 97, 130-138.
42. Silver, P. and Wickner, W. (1983). Genetic mapping of the E. coli leader (signal) peptidase gene (lep): A new approach for determining the map position of a cloned gene. J. Bact. 154, 569-572.
43. Zimmermann, R. and Wickner, W. (1983). Energetics and intermediates of the assembly of protein OmpA into the outer membrane of Escherichia coli. J. Biol. Chem. 258, 3920-3925.
44. Wolfe, P.B., Wickner, W. and Goodman, J. (1983). Structure of the E. coli leader peptidase. J. Biol. Chem. 258, 12073-12080.
45. Wickner, W. (1983). M13 coat protein as a model of membrane assembly. TIBS 8, 90-92.
46. Watts, C., Wickner, W. and Zimmermann, R. (1983). The specificity of preprotein cleavage is the same in mammalian endoplasmic reticulum and bacteria, while membrane recognition differs. Proc. Natl. Acad. Sci. U.S.A. 80, 2809-2813.
47. Ohno-Iwashita, Y. and Wickner, W. (1983). Reconstitution of rapid and asymmetric assembly of M13 procoat protein into liposomes which have bacterial leader peptidase. J. Biol. Chem. 258, 1895-1900.
48. Wickner, W. (1983). Separate signal and trigger steps in bacterial protein export. TIBS 8, 427-428.
49. Ohno-Iwashita, Y., Wolfe, P.B., Ito, K. and Wickner, W. (1984). Processing of pre-proteins by liposomes bearing leader peptidase. Biochemistry 23, 6178-6184.
50. Wolfe, P.B. and Wickner, W. (1984). Bacterial leader peptidase, a membrane protein without a leader peptide, uses the same export pathway as pre-secretory proteins. Cell 36, 1067-1072.
51. Wolfe, P., Rice, M. and Wickner, W. (1984). Effects of the two sec genes on protein assembly into the plasma membrane of Escherichia coli. J. Biol. Chem. 260, 1836-1841.
52. Wickner, W. and Lodish, H. (1985). The common themes of protein insertion across membranes. Science 230, 400-407.
53. Dierstein, R. and Wickner, W. (1985). Self-assembly in protein export: The leader region of pre-maltose binding protein binds amphiphiles. J. Biol. Chem. 260, 15919-15924.
54. Kuhn, A. and Wickner, W. (1985). Conserved residues of the leader peptide are essential for cleavage by leader peptidase. J. Biol. Chem. 260, 15914-15918.
55. Kuhn, A. and Wickner, W. (1985). Isolation of mutants in M13 coat protein that affect its synthesis, processing, and assembly into phage. J. Biol. Chem. 260, 15907-15913.
56. Dalbey, R.E. and Wickner, W. (1985). Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J. Biol. Chem. 260, 15925-15931.
57. Geller, B.L. and Wickner, W. (1985). M13 procoat inserts into liposomes in the absence of other membrane proteins. J. Biol. Chem. 260, 13281-13285.
58. Dierstein, R. and Wickner, W. (1986). Requirements for substrate recognition by bacterial leader peptidase. EMBO J. 5, 427-431.
59. Geller, B.L., Movva, N.R. and Wickner, W. (1986). Both ATP and the electrochemical potential are required for optimal assembly of pro-OmpA into Escherichia coli inner membrane vesicles. Proc. Natl. Acad. Sci. U.S.A. 83, 4219-4222.
60. Kuhn, A., Wickner, W. and Kreil, G. (1986). The cytoplasmic carboxy terminus of M13 procoat is required for the membrane insertion of its central domain. Nature 322, 335-339.
61. Bacallao, R., Crooke, E., Shiba, K., Wickner, W. and Ito, K. (1986). The secY protein can act post-translationally to promote bacterial protein export. J. Biol. Chem. 261, 12907-12910.
62. Wickner, W., Moore, K., Dibb, N., Geissert, D. and Rice M. (1986). The leader peptide of M13 procoat inhibits purified E. coli leader peptidase. J. Bact. 169, 38221-38222.
63. Dalbey, R. and Wickner, W. (1986). The role of the polar, carboxy-terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane. J. Biol. Chem. 261, 13844-13849.
64. Kuhn, A., Kreil, G. and Wickner, W. (1986). Both hydrophobic domains of M13 procoat are required to initiate membrane insertion. EMBO J. 5, 3681-3685.
65. Wickner, W. (1986). The membrane trigger hypothesis revisited. In Current Topics in Microbiology and Immunology 125, P.C. Tai and H. Wu, eds. (Springer-Verlag, Berlin).
66. Dalbey, R. and Wickner, W. (1987). A small domain of Escherichia coli leader peptidase has a critical role in its membrane assembly. Science, 235, 783-787.
67. Weisman, L.S., Bacallao, R. and Wickner, W. (1987). Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J. Cell Biol. 105, 1539-1548.
68. Kuhn, A., Kreil, G. and Wickner, W. (1987). Recombinant forms of M13 procoat with an OmpA leader sequence or a large carboxy-terminal extension retain their independence of secY function. EMBO J. 6, 501-505.
69. Dalbey, R.E., Kuhn, A. and Wickner, W. .(1987). The internal signal sequence of Escherichia coli leader peptidase is necessary, but not sufficient, for its rapid membrane assembly. J. Biol. Chem. 262, 13241-13245.
70. Crooke, E. and Wickner W. (1987). The trigger factor: A soluble protein which folds pro-OmpA into a membrane assembly competent form. Proc. Natl. Acad. Sci. U.S.A. 84, 5216-5220.
71. Dalbey, R.E. and Wickner, W. (1988). Characterization of the internal signal-anchor domain of Escherichia coli leader peptidase. J. Biol. Chem., 263, 404-408.
72. Wickner, W. (1988). Mechanisms of membrane assembly: General lessons from the study of M13 coat protein and Escherichia coli leader peptidase. Biochem. 27, 1081-1086.
73. Crooke, E., Brundage, L., Rice, M., and Wickner, W. (1988). ProOmpA
spontaneously folds in a membrane assembly competent state which trigger
factor stabilizes. EMBO J., 7, 1831-1835.
74. Weisman, L.S. and Wickner, W. (1988). Intervacuole exchange in the yeast zygote
defines a new pathway in organelle communication. Science, 241, 589-591.
75. Guthrie, B. and Wickner, W. (1988). Yeast vacuoles fragment when microtubules are disrupted. J. Cell Biol., 107, 115-120.
76. Crooke, E., Guthrie, B., Lecker, S., Lill, R., and Wickner, W. (1988). ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle. Cell 54, 1003-1011.
77. Lill, R., Crooke, E., Guthrie, B., and Wickner, W. (1988). The "trigger factor cycle" includes ribosomes, presecretory proteins, and the plasma membrane. Cell, 54, 1013-1018.
78. Moore, K.E., Dalbey, R.E. and Wickner, W. (1988). In vitro assembly of leader peptidase into Escherichia coli membrane vesicles. J. Bacteriol., 170, 4395-4398.
79. Cunningham, K.C. and Wickner, W. (1988). Yeast KEX2 Protease and
Mannosyltransferase I are localized to distinct compartments of the secretory
pathway. Yeast, 5, 25-33.
80. von Heijne, G., Wickner, W. and Dalbey, R.E. (1988). The cytoplasmic domain of Escherichia coli leader peptidase is a translocation poison sequence. Proc. Natl. Acad. Sci. U.S.A., 85, 3363-3366.
81. Lecker, S., Meyer, D., and Wickner, W. (1989). Export of prepro-a-factor from Escherichia coli. J. Biol. Chem., 264, 1882-1886.
82. Cunningham, K., Lill, R., Crooke, E., Rice, M., Moore, K., Wickner, W., and Oliver, D. (1989). Isolation of SecA protein, a peripheral protein of the E. coli plasma membrane that is essential for the functional binding and translocation of proOmpA. EMBO J., 8, 955-959.
83. Lill, R., Cunningham, K., Brundage, L., Ito, K., Oliver, D., and Wickner, W. (1989). The SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of E. coli. EMBO J., 8, 961-966.
84. Wickner, W. (1989). Secretion and membrane assembly. TIBS 14, 280-283.
85. Lecker, S., Lill, R., Ziegelhoffer, T., Bassford, P.J. Jr., Kumamoto, C.A., and Wickner, W. (1989). Three pure chaperone proteins of Escherichia coli, SecB, Trigger Factor, and GroEL, form Soluble Complexes with Precursor Proteins in vitro. EMBO J., 8, 2703-2709.
86. Cunningham, K. and Wickner, W. (1989). Detergent disruption of bacterial inner membranes and recovery of protein translocation activity. Proc. Natl. Acad. Sci. USA, 86, 8673-8677.
87. Cunningham, K. and Wickner, W. (1989). Specific recognition of the leader region of precursor proteins is required for the activation of translocation ATPase of E. coli. Proc. Natl. Acad. Sci. USA, 86, 8630-8634.
88. Millan, J.L.S., Boyd, D., Dalbey, R., Wickner, W., and Beckwith, J. (1989). The use of phoA fusions to study the topology of the E. coli inner membrane protein, leader peptidase. J. Bacteriol, 171, 5536-5541.
89. Lill, R., Dowhan, W., and Wickner, W. (1990). The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell, 60, 271-281.
90. Weisman, L.S., Emr, S.D., and Wickner, W.T. (1990). Mutants of Saccharomyces cerevisiae which Block Intervacuole Vesicular Traffic and Vacuole Division and Segregation. Proc. Natl. Acad. Sci. USA, 87, 1076-1080.
91. Lecker, S., Driessen, A.J.M., and Wickner, W. (1990). ProOmpA contains secondary and tertiary structure prior to translocation and is shielded from aggregation by association with SecB protein. EMBO J., 7, 2309-2314.
92. Driessen, A.J.M. and Wickner, W. (1990). Solubilization and functional reconstitution of the protein translocation enzymes of Escherichia coli. Proc. Natl. Acad. Sci. USA, 87, 3107-3111.
93. Guthrie, B. and Wickner, W. (1990). Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J. Bacteriol., 172, 5555-5562.
94. Brundage, L., Hendrick, J.P., Schiebel, E., Driessen, A.J.M., and Wickner, W. (1990). The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649-657.
95. Hartl, F.-U., Lecker, S., Schiebel, E., Hendrick, J.P., and Wickner, W. (1990). The binding of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli membrane. Cell 63, 269-279.
96. Wickner, W., Driessen, A.J.M., and Hartl, F.-U. (1991). The enzymology of protein translocation across the Escherichia coli plasma membrane. Ann. Rev. Biochem. 60, 101-124.
97. Driessen, A.J.M. and Wickner, W. (1991). Proton transfer is rate-limiting for translocation of precursor proteins by the Escherichia coli translocase. Proc. Natl. Acad. Sci. USA 88, 2471-2475.
98. Driessen, A.J.M., Brundage, L., Hendrick, J.P., Schiebel, E., and Wickner, W. (1991). Preprotein translocase of Escherichia coli: solubilization, purification, and reconstitution of the integral membrane subunits SecY/E. in "Vectorial transport of proteins across membranes in prokaryotes and eukaryotes", Methods in Cell Biology, A. M. Tartakoff, ed.; pp.148-165.
99. Hendrick, J.P. and Wickner, W. (1991). SecA protein needs both acidic phospholipids and SecY/E protein for functional, high-affinity binding to the E. coli plasma membrane. J. Biol. Chem. 266, 24596-24600.
100. Schiebel, E., Driessen, A.J.M., Hartl, F.-U., and Wickner, W. (1991). DmH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927-939.
101. Shaw, J.M. and Wickner, W. (1991). vac2: a yeast mutant which distinguishes vacuole segregation from Golgi-to-vacuole protein targeting. EMBO J. 10, 1741-1748.
102. Brundage, L., Fimmel, C.J., Mizushima, S., and Wickner, W. (1992). SecY, SecE, and Band 1 form the membrane-embedded domain of E. coli preprotein translocase. J. Biol. Chem. 267, 4166-4170.
103. Weisman, L.S. and Wickner, W. (1992). Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J. Biol. Chem., 267, 618-623.
104. Schiebel, E. and Wickner, W. (1992). Preprotein translocase creates a halide anion permeability in the Escherichia coli plasma membrane. J. Biol. Chem. 267, 7505-7510.
105. Wickner, B. (1992). Where are we in the exploration of Escherichia coli translocation pathways? Chap 1 in Membrane Biogenesis and Protein Targeting, W. Neupert and R. Lill, eds. (Elsevier).
106. Arkowitz, R., Joly, J., and Wickner, W. (1993). Translocation can drive the unfolding of a preprotein domain. EMBO J. 12, 243-253.
107. Conradt, B., Shaw, J., Vida, T., Emr, S.D., and Wickner, W. (1992). In vitro reactions of vacuole inheritance. J. Cell Biol. 119, 1469-1479.
108. Bassilana, M., Arkowitz, R.A., and Wickner, W. (1992). The role of the mature domain of proOmpA in the translocation ATPase reaction. J. Biol. Chem. 267, 25246-25250.
109. Joly, J.C. and Wickner, W. (1993). The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. EMBO J. 12, 255-263.
110. Bassilana, M. and Wickner, W. (1993). Purified E. coli preprotein translocase catalyzes multiple cycles of precursor protein translocation. Biochemistry, 32, 2626-2630.
111. Wickner, W. (1994). Introduction to the E. coli Preprotein Translocase. in “Guidebook to Genes in Secretion”, J. Rothblatt and M.J. Gething, Eds.
112. Joly, J. C., Leonard, M.R., and Wickner, W. (1994). Subunit dynamics in Escherichia coli preprotein translocase. Proc. Natl. Acad. Sci. USA 91, 4703-4707.
113. Arkowitz, R.A. and Wickner, W. (1994). SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation. EMBO J. 13, 954-963.
114. Economou, A. and Wickner, W. (1994). SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835-843.
115. Haas, A., Conradt, B., and Wickner, W. (1994). G-protein ligands inhibit in vitro reactions of vacuole inheritance. J. Cell Biol. 126, 87-97.
116. Conradt, B., Haas, A., and Wickner, W. (1994). Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro. J. Cell Biol. 126, 99-110.
117. Douville, K., Leonard, M., Brundage, L., Nishiyama, K.-i., Tokuda, H., Mizushima, S., and Wickner, W. (1994). The band 1 subunit of Escherichia coli preprotein translocase and the integral membrane export factor P12 are the same protein. J. Biol. Chem. 269, 18705-18707.
118. W.T. Wickner (1994) How ATP drives proteins across membranes. Science 266, 1197-1198.
119. Nicolson, T.A., Weisman, L.S., Payne, G.S., and Wickner, W.T. (1995). A truncated form of the PHO80 cyclin redirects the PHO85 kinase to disrupt vacuole inheritance in S. cerevisiae. J. Cell Biol. 130, 835-845.
120. Douville, K., Price, A., Eichler, J., Economou, A., and Wickner, W. (1995) SecYEG and SecA are the only stoichiometric components of preprotein translocase. J. Biol. Chem. 270, 20106-20111.
121. Haas, A., Scheglmann, D., Lazar, T., Gallwitz, D., and Wickner, W. (1995) The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBO J. 14, 5258-5270.
122. Wickner, W., Leonard, M.R., and Economou, A. (1995). On the road to translocase. Cold Spring Harbor Symposium Quant. Biol. LX, 285-290.
123. Xu, Z. and Wickner, W. (1995). Thioredoxin is required for vacuole inheritance in S. cerevisiae. J. Cell Biol. 132, 787-794.
124. Economou, A., Pogliano, J.A., Beckwith, J., Oliver, D., and Wickner, W. (1995). SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83, 1171-1181.
125. Wickner, W. (1995). The nascent-polypeptide-associated complex: Having a "NAC" for fidelity in translocation. Proc. Natl. Acad. Sci. USA 92, 9433-9434.
126. Nicolson, T., Conradt, B., and Wickner, W. (1996). The vac5-1 cyclin of S. cerevisiae induces expression of a small cytosolic factor which inhibits vacuole inheritance. J. Bacteriol. 178, 4047-4051.
127. Mayer, A., Wickner, W., and Haas, A. (1996). Sec18p (NSF)-driven release of Sec17p (a-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83-94.
128. Haas, A. and Wickner, W. (1996). Homotypic vacuole fusion requires Sec17p (yeast a-SNAP) and Sec18p (yeast NSF). EMBO J.15, 3296-3305.
129. Warren, G. and Wickner, W. (1996). Organelle inheritance. Cell 84, 395-400.
130. Price, A., Economou, A., Duong, F., and Wickner, W. (1996). Separable ATPase and membrane insertion domains of the SecA subunit of preprotein translocase. J. Biol. Chem. 271, 31580-31584.
131. Wickner, W. and Leonard, M.R. (1996). Escherichia coli Preprotein Translocase. J. Biol. Chem. 271, 29514-29516.
132. Duong, F. and Wickner, W. (1997). Distinct catalytic roles of the SecYE, SecG, and SecDFYajC subunits of preprotein translocase holoenzyme. EMBO J. 16, 2756-2768.
133. Xu, Z., Mayer, A., Muller, E., and Wickner, W. (1997). A heterodimer of thioredoxin and I2B Cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J. Cell Biol. 136, 299-306.
134. Mayer, A. and Wickner, W. (1997). Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136, 307-317.
135. Eichler, J., Brunner, J., and Wickner, W. (1997). The protease-protected SecA 30kDa domain is shielded from the membrane's lipid phase. EMBO J. 16, 2188- 2196.
136. Eichler, J. and Wickner, W. (1997). Both an N-terminal 65 kDa domain and a C-terminal 30 kDa domain of SecA cycle into the membrane at SecYEG during translocation. Proc. Natl. Acad. Sci. USA 94, 5574-5581.
137. Slusarewicz, P., Xu, Z., Seefeld, K., Haas, A., and Wickner, W. (1997) IB2 is a small cytosolic protein which participates in vacuole fusion. Proc. Natl. Acad. Sci. USA 94, 5582-5587.
138. Nichols, B.J., Ungermann, C., Pelham, H.R.B., Wickner, W.T., and Haas, A. (1997) Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199-202.
139. Duong, F. and Wickner, W. (1997) The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J. 16, 4871-4879.
140. Duong, F., Eichler, J., Price, A., Leonard, M., and Wickner, W. (1997) Biogenesis of the bacterial envelope. Cell 91, 567-573.
141. Ungermann, C., Nichols, B.J., Pelham, H.R.B., and Wickner, W. (1998) A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J. Cell Biol. 140, 61-69.
142. Xu, Z., Sato, K., and Wickner, W. (1998) LMA1 binds to vacuaoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 93, 1125-1134.
143. Duong, F. and Wickner, W. (1998) Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. EMBO J. 17, 696-705.
144. Ungermann, C. and Wickner, W. (1998) Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J. 17, 3269-3276.
145. Eichler, J., Rinard, K., and Wickner, W. (1998) SecA catalysis of preprotein translocation occurs exclusively at SecYEG. J. Biol. Chem. 273, 21,675-21,681.
146. Sato, K. and Wickner, W. (1998) Functional reconstitution of Ypt7p GTPase and a purified vacuole SNARE complex. Science, 281, 700-702.
147. Eichler, J. and Wickner, W. (1998) The SecA subunit of Escherichia coli preprotein translocase is exposed to the periplasm. J. Bacteriol. 180, 5776-5997.
148. Ungermann, C., Sato, K. and Wickner, W. (1998) Defining the functions of trans-SNARE pairs. Nature 396, 543-548.
149. Duong, F. and Wickner, W. (1999) The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. EMBO J. 18, 3263-3270.
150. Ungermann, C., von Mollard, G.F., Jensen, O.N., Margolis, N., Stevens, T., and Wickner, W. (1999) Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. J. Cell Biol. 145, 1435-1442.
151. Ungermann, C., Wickner, W., and Xu, Z. (1999). Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. Proc. Natl. Acad. Sci. USA 96, 11194-11199.
152. Mayer, A., Scheglmann, D., Dove, S., Glatz, A., Wickner, W., and Haas, A. (2000) Phosphatidylinositol-(4,5)-bisphosphate regulates two steps of homotypic vacuole fusion. Mol. Biol. Cell 11, 807-817.
153. Price, A., Wickner, W., and Ungermann, C. (2000) Vacuole protein sorting (VPS) proteins needed for transport vesicle budding from the Golgi are also required for the docking step of homotypic vacuole fusion. J. Cell Biol. 148, 1223-1230.
154. Price, A., Seals, D., Wickner, W., and Ungermann, C. (2000) The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J. Cell Biol. 148, 1231-1238.
155. Ungermann, C., Price, A., and Wickner, W. (2000) A new role for a SNARE protein as a regulator of the Ypt7/Rab-dependent stage of docking. Proc. Natl. Acad. Sci. USA 97, 8889-8891.
156. Wickner, W. and Haas, A. (2000). Yeast Vacuole Fusion: A Window on Organelle Trafficking Mechanisms. Ann. Rev. Biochem. 69, 247-275.
157. Wang, L., Ungermann, C., and Wickner, W. (2000) The docking of primed vacuoles can be reversibly arrested by excess Sec17p (a-SNAP). J. Biol. Chem. 275, 22862-22867.
158. Seals, D., Eitzen, G., Margolis, N., Wickner, W., and Price, A. (2000) A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl. Acad. Sci. USA 97, 9402-9407.
159. Yahr, T. and Wickner, W. (2000) Evaluating the oligomeric state of SecYEG in preprotein translocase. EMBO J. 19, 4393-4401.
160. Eitzen, G., Will, E., Gallwitz, D., Haas, A., and Wickner, W. (2000). Sequential action of two GTPases to promote vacuole docking and fusion. EMBO J. 19, 6713-6720.
161. Yahr, T.L. and Wickner, W. (2001) Functional reconstitution of bacterial Tat translocation in vitro. EMBO J. 20, 2472-2479.
162. Kato, M. and Wickner, W. (2001) Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. EMBO J. 20, 2035-2040.
163. Eitzen, G., Thorngren, N., and Wickner, W. (2001) Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking. EMBO J. 20, 5650-5656.
164. Wang, L., Seeley, S., Wickner, W. and Merz, A. (2002) Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell 108, 357-369.
165. Wickner, W. (2002) Yeast vacuoles and membrane fusion pathways. EMBO J. 21, 1241-1247.
166. Seeley, E.S., Kato, M., Margolis, N., Wickner, W., and Eitzen, G. (2002) The genomics of homotypic vacuole fusion. Mol. Biol. Cell 13, 782-794.
167. Eitzen, G., Wang, L., Thorngren, N., and Wickner, W. (2002) Remodeling of organelle-bound actin is required for yeast vacuole fusion. J. Cell Biol. 158, 669-679.
168. Wang, L., Merz, A., Collins, K., and Wickner, W. (2003) Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J. Cell Biol. 160, 365-374.
169. Kato, M. and Wickner, W. (2003) Vam10p defines a Sec18p-independent step of priming that allows yeast vacuole tethering. Proc. Natl. Acad. Sci. USA 100, 6398-6403.
170. Merz, A. and Wickner, W. (2004) Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen. J. Cell Biol. 164, 195-206.
171. Thorngren, N., Collins, K., Fratti, R., Wickner, W., and Merz, A.J. (2004) A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. EMBO J., 23, 2765-2776.
172. Merz, A.J. and Wickner, W. (2004) Resolution of organelle docking and fusion kinetics in a cell-free assay. Proc. Natl. Acad. Sci. USA 101, 11548-11553.
173. Fratti, R., Jun, Y., Merz, A.J., Margolis, N., and Wickner, W. (2004) Interdependent assembly of specific "regulatory" lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J. Cell Biol. 167, 1087-1098.
174. Jun, Y., Fratti, R.A., and Wickner, W. (2004) Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion. J. Biol. Chem. 279, 53186-53195.
175. Starai, V.J., Thorngren, N., Fratti, R.A., and Wickner, W. (2005) Ion regulation of homotypic vacuole fusion in Saccharomyces cerevisiae. J. Biol. Chem. 280, 16754-16762.
176. Collins, K.M., Thorngren, N.L., Fratti, R.A., and Wickner, W.T. (2005) Sec17 and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J. 24, 1775-1786.
177. Wickner, W. and Schekman, R. (2005) Protein translocation across biological membranes. Science 310, 1452-1456.
178. Stroupe, C., Collins, K.M., Fratti, R.A., and Wickner, W.T. (2006) Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J. 25, 1579-1589.
179. Decker, B. and Wickner, W. (2006) Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. J. Biol. Chem. 281, 14523-14528.
180. Xu, H. and Wickner, W. (2006) Bem1p is a positive regulator of the homotypic fusion of yeast vacuoles. J. Biol. Chem. 281, 27158-27166.
181. Jun, Y., Thorngren, N., Starai, V., Fratti, R., Collins, K., and Wickner, W. (2006) Reversible, cooperative reactions of yeast vacuole docking. EMBO J. 25, 5260-5269.
182. Collins, K.M, and Wickner, W.T. (2007) Trans-SNARE complex assembly and yeast vacuole membrane fusion. Proc. Natl. Acad. Sci. USA 104, 8755-8760.
183. Fratti, R., Collins, K.M., Hickey, C.M., and Wickner, W. (2007) Stringent 3Q:1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. J. Biol. Chem. 282, 14861-14867.
184. Fratti, R., and Wickner, W. (2007) Distinct targeting and fusion functions of the PX- and SNARE-domains of yeast vacuolar Vam7p. J. Biol. Chem. 282, 13133-13138.
185. Jun, Y. and Wickner, W. (2007) Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc. Natl. Acad. Sci. USA 104, 13010-13015.
186. Starai, V., Jun, Y., and Wickner, W. (2007) Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Featured Article, Proc. Natl. Acad. Sci USA 104, 13551-13558.
187. Jun, Y., Xu, H., Thorngren, N., and Wickner, W. (2007) Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. EMBO J. 26, 4935-4945.
188. Starai, V.J. and Wickner, W. (2008) Yeast HOPS complex proofreads the SNARE 0-layer and activates it for fusion. Mol. Biol. Cell 19, 2500-2508.
189. Mima, J., Hickey, C., Xu, H., Jun, Y, and Wickner, W. (2008) Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J. 27, 2031-2042.
190. Wickner, W. and Schekman, R. (2008) Membrane fusion. Nat. Struct. Mol. Biol. 15, 658-664.
191. Hickey, C.M., Sroupe, C., and Wickner, W. (2009) The major role of the Rab Ypt7p in vacuole fusion is supporting HOPS membrane association. J. Biol. Chem. 284, 16,118-16,125.
192. Stroupe, C., Hickey, C.M., Mima, J., Burfeind, A.S. and Wickner, W. (2009) Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. Proc. Natl. Acad. Sci. USA 106, 17,626-17,633.
193. Mima, J. and Wickner, W. (2009) Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion. J. Biol. Chem. 284, 27,114-27,122.
194. Mima, J. and Wickner, W. (2009) Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proc. Natl. Acad. Sci. USA 106, 16,191-16,196.
195. Hickey, C. and Wickner, W. (2010) HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. Mol Biol. Cell 21, 2297-2305.
196. Xu, H., Jun, Y., Thompson, J., Yates, J., and Wickner, W. (2010) HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO J. 29, 1948-1960.
197. Wickner, W. (2010) Membrane fusion: 5 lipids, 4 SNAREs, 3 chaperones, 2 nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Ann Rev. Cell Dev. Biol. 26, 115-136.
198. Xu, H. and Wickner, W. (2010) Phosphoinositides function asymmetrically for membrane fusion, promoting tethering and 3Q-SNARE subcomplex assembly. J. Biol. Chem. 285, 39359-39365.
199. Xu, H., Zick, M., Wickner, W., and Jun, Y. (2011) A lipid-anchored SNARE supports membrane fusion. Proc. Natl. Acad. Sci. USA 108, 17325-17330.
200. Wickner, W.T., Stubbe, J., Hirschberg, C.B., Garrett, T., and Dowhan, W. (2011) Chris Raetz, scientist and enduring friend. Proc. Natl. Acad. Sci. USA 108, 17255-17256.
201. Wickner, W. (2011). Eugene Patrick Kennedy, 1919-2011. Proc. Natl. Acad. Sci. USA 108, 19122-19123.
202. Zick, M. and Wickner, W. (2012) Phosphorylation of the effector complex HOPS by the vacuolar kinase Yck3p confers Rab nucleotide specificity for vacuole docking and fusion. Mol. Biol. Cell 23, 3429-3437.
203. Xu, H. and Wickner, W. (2012) N-terminal domain of the Vacuolar SNARE Vam7p promotes trans-SNARE complex assembly. Proc. Natl. Acad. Sci. USA 109, 17,936-17,941.
204. Karunakaran, V. and Wickner, W. (2013) Fusion proteins and select lipids cooperate as membrane receptors for the Soluble N-Ethylmaledimide-sensitive Factor Attachment Protein Receptor (SNARE) Vam7p. J. Biol. Chem 288, 28557-28566.
205. Zick, M. and Wickner, W. (2013) The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7p into fusogenic trans-SNARE complexes. Mol. Biol. Cell, 24, 3746-3753.
206. Wickner, W. (2013) Profile of Thomas Südhof, James Rothman, and Randy Schekman, 2013 Nobel Laureates in Physiology or Medicine. Proc. Natl. Acad. Sci. USA 46, 18349-18350.
207. Zick, M., Stroupe, C., Orr, A., Douville, D., and Wickner, W. (2014) Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. eLife. doi: 10.7554/eLife.01879.
208. Zick, M. and Wickner, W. (2014) A distinct tethering step is vital for vacuole membrane fusion. eLife, doi: 10.7754/eLife.03251.
209. Orr, A., Wickner, W., Rusin, S.F., Kettenbach, A.N., and Zick, M. (2015) Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab:GTP for membrane binding and to catalyze tethering and fusion. Mol. Biol. Cell 26, 305-315.
210. Zick, M., Orr, A., Schwartz, M.L., Merz, A.J., and Wickner, W.T. (2015) Sec17 can trigger fusion of trans-SNARE paired membranes without Sec18. Proc. Natl. Acad. Sci. USA 112, E2290-97. doi:10.1073/pnas.1506409112.
211. Baker, R.W., Jeffrey, P.D., Zick, M., Phillips, B.P., Wickner, W.T., and Hughson, F.M. (2015) A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349, 1111-1114.
212. Zick, M. and Wickner, W. (2016) Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement. Mol. Biol. of the Cell 27, 2590-2597.
213. Wickner, W. and Rizo, J. (2017) A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol. Biol. Cell 28, 707-711, doi:10.1091/mbc.E16-07-0517.
214. Orr, A., Song, H., Rusin, S.F., Kettenbach, A.N., and Wickner, W. (2017) HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. Mol. Biol. Cell 28, 975-983.
215. Song, H., Orr, A., Duan, M., Merz, A., and Wickner, W. (2017) Sec17/Sec18 act twice, enhancing fusion and then disassembling cis-SNARE complexes. eLife, https://doi.org/10.7554/eLife.26646.001.
216. Song, H. and Wickner, W. (2017) A short region upstream of the yeast vacuolar Qa SNARE heptad repeats promotes membrane fusion through enhanced SNARE complex assembly. Mol. Biol. Cell, 28, 2282-2289.
217. Harner, M. and Wickner, W. (2018) Assembly of intermediates for rapid membrane fusion. J. Biol. Chem. 293, 1346-1352.
219. Song, H. and Wickner, W. (2019) Tethering guides fusion-competent trans-SNARE assembly. Proc. Natl. Acad. Sci. USA, 116, 13952-13957; doi/10.1073/pnas.1907640116.
220. Jun, Y., and Wickner, W. (2019) Sec17/aSNAP and Sec18/NSF restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments. Proc. Natl. Acad. Sci. USA doi 10.1073/pnas.1913985116.
221. Song, H., Orr, A., Lee, M., Harner, M., and Wickner, W. (2020) HOPS recognizes each SNARE, assembling ternary trans-SNARE complexes for rapid fusion upon engagement with the 4th SNARE. eLife DOI 10.7554/eLife.53559.
222. Torng, T., Song, H. and Wickner, W. (2020) Asymmetric Rab activation of vacuolar HOPS to catalyze SNARE complex assembly. Mol. Biol. Cell, DOI: 10.1091/mbc.E20-01-0019.
223. Lee, M., Orr, A., Wickner, W., and Song, H. (2020) A Rab prenyl membrane-anchor allows effector recognition to be regulated by bound guanine nucleotide. Proc. Natl. Acad. Sci USA, DOI 10.1073/pnas.2000923117